Todos os posts de George Silva

GeoSampa é oficializado como base oficial

Boas notícias sobre o GeoSampa, um dos projetos desenvolvidos e apoiados pela SIGMA Geosistemas.

O GeoSampa é um portal de informações geográficas, disponibilizado pela PRODAM e pela SMUL (Secretaria Municipal de Urbanismo e Licenciamento), contendo mais de 180 camadas de informações geográficas.

A prefeitura de São Paulo, oficializou a plataforma como base de dados oficial do município, aumentando ainda mais a relevância da mesma, através do decreto 57.770, editado pelo prefeito João Dória.

A plataforma já era bastante utilizada pela população e pelos colaboradores municipais, agora tem o status de base de dados oficial, possuindo mais de cem mil acessos mensais únicos.

Este é um passo importante para a correta institucionalização do sistema, permitindo uma sinergia entre os diversos interessados nos dados existentes e publicados através da mesma.

Entre os artigos do decreto, um me chama bastante atenção, oficializando o GeoSampa como plataforma integradora:

Art. 6º Os sistemas de dados e informações municipais de qualquer natureza deverão ser estruturados pelos órgãos responsáveis de forma a permitir sua interoperabilidade e integração com os demais sistemas, facilitando seu escalonamento, reuso e manutenção, e deverão:

I – garantir a simplificação do acesso, de forma a possibilitar à Administração Municipal o uso eficiente de suas informações no atendimento às demandas internas e externas;

II – dar transparência às ações de governo, de forma a permitir o acesso público a todas as informações que não sejam de uso restrito, em conformidade com a legislação pertinente, em especial o Decreto nº 53.623, de 12 de dezembro de 2012;

III – garantir que não haja a sobreposição de ações, evitando o dispêndio desnecessário de recursos e a duplicidade de dados da Administração Municipal.

Parágrafo único. O mecanismo de integração deverá garantir ao usuário acesso à informação atualizada por meio do sincronismo entre os sistemas e as bases externas com periodicidade definida e da atualização da base geoespacial.

O artigo 6° é uma comprovação de nossa filosofia de trabalho: o geoprocessamento pode e deve ser usado de forma inteligente, de maneira aumentar a eficiência do planejamento e redução de custos para a administração pública.

A SIGMA Geosistemas ajuda e ajudou na construção desta plataforma, utilizando apenas tecnologias livres. Dentre os serviços executados, desenvolvemos todas as ferramentas de análise, disponíveis por enquanto na intranet – como filtros, pesquisas geoespaciais, geração de gráficos e agrupamentos.

Em tempo, gostaria de parabenizar a toda equipe envolvida no GeoSampa e ao prefeito, por uma decisão acertada.

Ainda teremos muitas novidades sobre esta plataforma. Fique ligado!

Django Topology

Olá pessoal!

Aqui na SIGMA sempre estamos desenvolvendo ferramentas úteis para nós e que talvez também sejam úteis para outras pessoas.

Nossa ideia principal, é contribuir um pouco com esse enorme ecossistema Python/Django existente. Como já disseram, estamos sobre os ombros de gigantes.

Bem, desenvolvemos o Django Topology com o objetivo de simplificar a validação de dados geométricos/geográficos que encontramos em nosso dia a dia.

É muito comum, por exemplo, ter de validar a entrada de um polígono e precisamos garantir que ele esteja dentro de outro polígono. Ou garantir que este polígono específico não esteja sobrepondo outro polígono de uma mesma classe.

Para isso desenvolvemos o Django Topology. Através dele você consegue configurar suas validações dentro do banco de dados e executá-las de forma simples.

O fluxo é simples e o pacote já conta com três validações:

  • must be contained – garante que o modelo A deve estar contido no modelo B;
  • must not overlap – garante que o modelo A não pode sobrepor nenhum outro registro em A;
  • must not overlap with – garante que o modelo A não pode sobrepor o modelo B;

O pacote é facilmente extensível e você desenvolver suas próprias validações topológicas.

Um exemplo simples:

        rule = Rule(
            name='regra de validação 1',
            description='A deve estar contido em B',
            message='deve estar contido',
            method='topology.rules.must_be_contained'
        )
        rule.save()
        topology_rule = TopologyRule(
            content_type_a=ContentType.objects.get(app_label='seuapp', model='item'),
            content_type_b=ContentType.objects.get(app_label='seuapp', model='container'),
            geom_field_b='geom',
            rule=rule
        )
        topology_rule.save()

Até aqui, definimos nossa regra topológica, de que A (qualquer instância do modelo Item) deve estar contida em B (Container).

Veja como realizar a validação:

        item_a = Item(geom=unit_polygon(Point(x=0.0, y=0.0, srid=4326)))
        item_a.save()
        container = Container(geom=unit_polygon(Point(x=0.0, y=0.0, srid=4326), size=3))
        container.save()

        errors = topology_rule.validate(item_a)
        len(errors)
>>> 3

No exemplo acima, calculamos os erros diretamente pela regra topológica (TopologyRule) e não foi encontrado nenhum erro.

Os erros gerados pelo TopologyRule não são persistidos no banco de dados, ficando a cargo do desenvolvedor a determinar o melhor momento para tal. As vezes nem será necessário, como por exemplo, em uma validação de formulário Django.

Também desenvolvemos um análogo ao TopologyChecker do QGIS e ele tem o mesmo nome. Sua função é executar todas as validações associadas a um determinado modelo, de uma vez, e persisti-las (ou não).

Veja como usá-lo:

        # definindo as regras
        rule1 = Rule(
            name='A não deve sobrepor A',
            description='A não deve sobrepor A',
            message='sobrepõe',
            method='topology.rules.must_not_overlap'
        )
        rule1.save()
        rule2 = Rule(
            name='A não deve sobrepor B',
            description='A não deve sobrepor B',
            message='sobrepõe',
            method='topology.rules.must_not_overlap_with'
        )
        rule2.save()
        topology_rule1 = TopologyRule(
            content_type_a=ContentType.objects.get(app_label='seuapp', model='item'),
            rule=rule1
        )
        topology_rule1.save()
        topology_rule2 = TopologyRule(
            content_type_a=ContentType.objects.get(app_label='seuapp', model='item'),
            content_type_b=ContentType.objects.get(app_label='seuapp', model='container'),
            geom_field_b='geom',
            rule=rule2
        )
        topology_rule2.save()

        item1 = Item(geom=unit_polygon(Point(x=0.0, y=0.0, srid=4326)))
        item1.save()
        item2 = Item(geom=unit_polygon(Point(x=0.0, y=0.0, srid=4326)))
        item2.save()
        container = Container(geom=unit_polygon(Point(x=0.0, y=0.0, srid=4326), size=2))
        container.save()

        # até aqui, criamos nossas regras e os registros de item e container

        topo_checker = TopologyChecker()

        errors = topo_checker.validate_all(Item)

O TopologyChecker retorna um dicionário, usando como chave o nome da validação executada e uma lista associada, com N erros detectados. No caso acima, o topologychecker encontrou 4 erros:

  • item 1 sobrepõe item 2;
  • item 2 sobrepõe item 1;
  • item 1 sobrepõe Container 1;
  • item 2 sobrepõe COntainer 1;

Estamos usando o Django Topology em produção no Geoadmin um produto que trabalha intensivamente com dados geográficos.

Você pode extender o mesmo com suas próprias validações. Basta criar um método com a seguinte assinatura:

def minha_validacao(rule, feature, **kwargs):
    # sua validacao aqui
    # deve retornar uma lista de TopologyError (sem salvar no banco)
    if feature.geom.intersects(outra_geometria):
        return [TopologyError()]

    return []

Com este método pronto, você só precisa criar uma Rule, apontando o atributo method para o caminmho qualificado da sua função:

rule = Rule(
    name='name'
    method='foo.bar.minha_validacao
)

Quer ajudar? Estamos aí, confere o repositório e bora lá.

Mágicas com UTM

A projeção UTM (Universal Transverse Mercator) é muito utilizada para todos os tipos de cartografia.

Ela nem sempre se aplica a todos os casos e deveria ser menos utilizada em algumas aplicações, mas com toda certeza é bastante comum no Brasil e no mundo.

Uma das características marcantes desta projeção, é que ela não é uma projeção única. São 60 zonas com parâmetros diferentes, para cada local do planeta, dividido a cada 6 graus de longitude.

Vou ensinar algumas mágicas utilizando princípios simples para se descobrir maiores informações, necessárias quando estamos trabalhando com essas zonas.

Zona UTM > Meridiano Central

O meridiano central de uma zona UTM é o local que possui a menor distorção da projeção.

Podemos calculá-lo, seguindo a fórmula:

MC = (6 * Z) - 183

Veja o exemplo:

MC = (22 * 6) - 183
MC = 132 - 183
MC = -51

Um outro exemplo, com a zona 30:

MC = (30 * 6) - 183
MC = 180 - 183
MC = -3

Para encontrar os limites de uma zona UTM, adicione 3 graus para o limite oeste e subtraia 3 graus para o limite leste.

MC = -51
Limite Leste = -51 - 3
Limite Leste = -54
Limite Oeste = -51 + 3
Limite Oeste = -48

Longitude > Meridiano Central

Este cálculo é importante: baseado no valor X (ou longitude), você consegue descobrir qual é o meridiano central da zona daquela coordenada.

# nota a divisão de longitude por 6 deve considerar apenas valores inteiros
MC = (6 * int(longitude/6)) + 3
MC = (6 * (-48/6)) + 3
MC = (6 * -8) + 3
MC = -45

Meridiano Central > Zona UTM

Com este cálculo, você informa o meridiano central e descobre qual zona UTM ele está inserido.

UTMZ = 30 - absoluto(int(MC/6))
UTMZ = 30 - absoluto(int(-45/6))
UTMZ = 30 - absoluto(int(-7.5))
UTMZ = 23

São três continhas fáceis de serem realizadas, que ajudam muito na hora de trabalhar com UTM.

Cartogram Mapbox

Na semana passada (ou retrasada) o Mapbox lançou um novo aplicativo interessante: o Cartogram. Ele a princípio, mais parece um brinquedo do que uma ferramenta na realidade e seu propósito é bem simples:

O usuário (você), faz o upload de uma imagem no aplicativo Cartogram e o mesmo calcula e monta um mapa usando as cores das imagens, automaticamente.

Além disso, você pode escolher alguns pontos na imagem original, para selecionar como input para as cores do mapa.

Veja alguns exemplos que gerei:

Meu cachorro

Este exemplo foi gerado com um imagem feita pelo Prisma do meu cachorro.

POTD Nasa

O segundo exemplo foi gerado com a “Imagem do Dia” da NASA (disponível aqui).

Apesar de ser um aplicativo simples, é bastante útil, principamente se você já usa o Mapbox. Quando você está logado, ele permite que você salve o estilo diretamnte na sua biblioteca de estilos na conta principal, podendo ser utilizado em outros mapas.

3 Ferramentas do PostGIS que são uma mão na roda

Não é segredo algum, mas todos sabemos que o PostGIS é a extensão espacial mais produtiva do mundo. Ela não só possui mais funcionalidades do que as outras disponíveis no mercado, mas como é open-source, com uma comunidade incrível por trás.

Hoje vou revelar alguns pequenos segredos escondidos nas funcionalidades do PostGIS para vocês. Estas funções, com toda certeza, irão te tornar mais produtivo e efetivo no uso desta ferramenta tão legal.

1. Escrita de Geometrias

Ler e escrever faz parte do básico do PostGIS. Existem várias funções que permitem a leitura e a escrita de geometrias no formato que o PostGIS espera.

Existem funções para conversão de texto para geometria, bytes para geometria e outros formatos. Mas a campeã de flexibilidade para testes rápidos e verificações é a ST_GeomFromText.

Veja abaixo um exemplo de como usá-la:

SELECT * FROM ST_GeomFromText('POINT(0 0)', 4326);

Veja a saída do PostGIS, no formato interno.

0101000020E610000000000000000000000000000000000000

Lembro, que esta funcionalidade não é somente útil para a conversão para o formato esperado, mas também para usar seu resultado como entrada para outras funções, como no exemplo:

-- o polígono interseciona o ponto?
SELECT * FROM ST_Intersects(
    ST_GeomFromText('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))', 4326),
    ST_GeomFromText('POINT(0 0)', 4326)
);

Retornando um resultado positivo:

t

A assinatura desta função é bem simples. Ela espera como primeiro parâmetro uma string e opcionalmente um inteiro, representando o SRID (Spatial Reference ID). Nos exemplos foi usado WGS-84 como SRID.

Referência: ST_GeomFromText

2. Validade de Geometrias

A validade das geometrias é uma questão importantíssima para qualquer tipo de uso em pacotes de geoprocessamento.

É bom lembrar que o único tipo de geometria (definido na [SFS] (Simple Feature Specification) que possui validade são os tipos poligonais (Polygon e MultiPolygon). Os outros tipos podem ser testados para sua validade, mas ela é sempre verdadeira.

Geometrias inválidas não podem ser corretamente renderizadas e irão “mentir” quando investigadas sob diversos aspectos – notavelmente, cálculos de área e testes de interseção podem falhar com geometrias inválidas.

No PostGIS, existem algumas formas de se verificar a validade de geometrias. São três funções simples que podem te ajudar a identificar culpados. As funções são:

  • ST_IsValid – Verifica a validade de uma geometria e retorna verdadeiro ou falso.
  • ST_IsValidReason – Verifica a validade de uma geometria e retorna a razão pela qual a mesma é inválida, exemplo: auto intersecção.
  • ST_IsValidDetail – Verifica a validade de uma geometria e retorna o motivo e a localização do problema, exemplo:
SELECT * FROM
    ST_IsValidDetail(
        ST_GeomFromText('POLYGON((0 0, 0 -1, 0 1, 1 1, 1 0, 0 0))', 4326)
    );

O resultado, neste caso, é uma tupla com três elementos: valid, reason e location:

f;"Self-intersection";"01010000000000000000000000000000000000F0BF"

3. Transformação de Referência Espacial

O PostGIS suporta mútliplas referências espaciais. Tradicionalmente, isto é conhecido por um código EPSG , o SRID.

SRID é a abreviação para Spatial Reference System Identifier, definido originalmente pelo EPSG. É um código único que identifica um sistema de referência espacial, com todos as suas variações de datum, projeção e sistema de coordenadas.

EPSG é a abreviação para Euroupean Petroleum Survey Group – que não existe mais, foi absorvido pelo IOGP (International Association of Oil and Gas Producers).

Geralmente, cada tabela no PostGIS, possui apenas uma coluna geométrica, com um SRIDdefinido. Apesar disso, o PostGIS suporta múltiplas colunas geométricas em uma mesma tabela e até mesmo colunas geométricas com referências espaciais nulas.

A multiplicidade de dados geográficos faz necessária a conversão entre diferentes SRIDs. Lembramos também que comparações e testes de relacionamento entre geometrias (como se uma geometria interseciona outra) devem ser feitos apenas se ambas geometrias possuem o mesmo sistema de referência espacial.

Um exemplo simples, é a conversão de uma coordenada UTM, na zona 22 Sul em SIRGAS 2000 para SIRGAS 2000 geográfico:

SELECT * FROM 
    ST_AsText(
        ST_Transform(
            ST_GeomFromText(
                'POINT(789071 7905599)', 31982),
                4674
            )
        )

Note que na chamada acima, usamos ST_GeomFromText para “instanciar” as geometrias em memória, de coordenadas geográficas, transformamos as mesmas com ST_Transform e pedimos sua representação textual com ST_AsText.

Para referências de códigos EPSG e SRIDs, use o site epsg.io. Abaixo estão as duas URLs as referências espaciais usadas no comando acima:

  • 31982 – SIRGAS 2000 UTM 22S;
  • 4674 – SIRGAS 2000 – Geográfico;

Conclusão

Apesar de discutirmos neste artigo, funções básicas do PostGIS, elas são muito úteis em todos os cenários, seja no desenvolvimento de sistemas com o PostGIS ou utilizando o PostGIS como motor de análise espacial.

Este é um dos primeiros artigos sobre PostGIS. Fique ligado aqui no blog que logo logo teremos mais.

Abraços